Toán 12 Hình Học: Ôn tập chương 3: Phương pháp tọa độ trong không gian: Hệ tọa độ trong không gian , Phương trình mặt phẳng

Hệ tọa độ trong không gian

Sau đây là phần lý thuyết TOÁN 12 Hình học Ôn tập chương 3: Phương pháp tọa độ trong không gian Hệ tọa độ trong không gian , Phương trình mặt phẳng chúng ta cùng nhau tìm hiểu:

 I. Hệ tọa độ trong không gian

1. Hệ trục tọa độ trong không gian

    Trong không gian, xét ba trục tọa độ Ox, Oy, Oz vuông góc với nhau từng đôi một và chung một điểm gốc O. Gọi i→j→k→ là các vectơ đơn vị, tương ứng trên các trục Ox, Oy, Oz. Hệ ba trục như vậy gọi là hệ trục tọa độ vuông góc trong không gian.

    Chú ý: Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

2. Tọa độ của vectơ

    a) Định nghĩa: u→ = (x; y; z) ⇔ k→ = xi→ + yj→ + zk→

    b) Tính chất: Cho a→ = (a1; a2; a3), b→ = (b1; b2; b3), k ∈ R

    • a→ ± b→ = (a1 ± b1; a2 ± b2; a3 ± b3; )

    • ka→ = (ka1; ka2; ka3)

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

    • 0→ = (0; 0; 0), i→ = (1; 0; 0), j→ = (0; 1; 0), k→ = (0; 0; 1)

    • a→ cùng phương b→ (b→ ≠ 0→) ⇔ a→ = kb→ (k ∈ R)

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

    • a→.b→ = a1.b1 + a2.b2 + a3.b3

    • a→ ⊥ b→ ⇔ a1b1 + a2b2 + a3b3 = 0

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

3. Tọa độ của điểm

    a) Định nghĩa: M(x; y; z) ⇔ OM→ = x.i→ + y.j→ + z.k→ (x : hoành độ, y : tung độ, z : cao độ)

    Chú ý: • M ∈ (Oxy) ⇔ z = 0; M ∈ (Oyz) ⇔ x = 0; M ∈ (Oxz) ⇔ y = 0

    • M ∈ Ox ⇔ y = z = 0; M ∈ Oy ⇔ x = z = 0; M ∈ Oz ⇔ x = y = 0 .

    b) Tính chất: Cho A(xA; yA; zA), B(xB; yB; zB)

    • AB→ = (xB – xA; yB – yA; zB – zA)

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

    • Toạ độ trung điểm của đoạn thẳng AB:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

    • Toạ độ trọng tâm G của tam giác ABC:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

    • Toạ độ trọng tâm G của tứ diện ABCD:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

4. Tích có hướng của hai vectơ

    a) Định nghĩa: Trong không gian Oxyz cho hai vectơ a→ = (a1; a2; a3), b→ = (b1; b2; b3). Tích có hướng của hai vectơ a→ và b→ kí hiệu là [a→b→], được xác định bởi

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

    Chú ý: Tích có hướng của hai vectơ là một vectơ, tích vô hướng của hai vectơ là một số.

    b) Tính chất:

    • [a→b→] ⊥ a→; [a→b→] ⊥ b→

    • [a→b→] = -[b→a→]

    • [i→j→] = k→; [j→k→] = i→; [k→i→] = j→

    • |[a→b→]| = |a→|.|b→|.sin(a→b→) (Chương trình nâng cao)

    • a→b→ cùng phương ⇔ [a→b→] = 0→ (chứng minh 3 điểm thẳng hàng)

    c) Ứng dụng của tích có hướng: (Chương trình nâng cao)

    • Điều kiện đồng phẳng của ba vectơ: a→b→ và c→ đồng phẳng ⇔ [a→b→].c→ = 0

    • Diện tích hình bình hành ABCD: SABCD = |[AB→], AD→|

    • Diện tích tam giác ABC: SABC = 1/2 |[AB→], AC→|

    • Thể tích khối hộp ABCDA’B’C’D’ : VABCD.A’B’C’D’ = |[AB→AD→].AA’→|

    • Thể tích tứ diện ABCD: VABCD = 1/6 |[AB→AC→].AD→|

II.Phương trình mặt phẳng

1. Vectơ pháp tuyến của mặt phẳng

    • Vectơ n→ ≠ 0→ là vectơ pháp tuyến (VTPT) nếu giá của n→ vuông góc với mặt phẳng (α)

    • Chú ý:

    – Nếu n→ là một VTPT của mặt phẳng (α) thì kn→ cũng là một VTPT của mặt phẳng (α).

    – Một mặt phẳng được xác định duy nhất nếu biết một điểm nó đi qua và một VTPT của nó.

    – Nếu u→v→ có giá song song hoặc nằm trên mặt phẳng (α) thì n→ = [u→v→] là một VTPT của (α)

2. Phương trình tổng quát của mặt phẳng

    – Trong không gian Oxy , mọi mặt phẳng đều có dạng phương trình:

    Ax + By + Cz + D = 0 với A2 + B2 + C2 ≠ 0

    – Nếu mặt phẳng (α) có phương trình Ax + By + Cz + D = 0 thì nó có một VTPT là n→(A; B; C).

    – Phương trình mặt phẳng đi qua điểm Mo(xo; yo; zo) và nhận vectơ n→(A; B; C) khác 0→ là VTPT là: A(x – xo) + B(y – yo) + C(z – zo) = 0 .

    • Các trường hợp riêng

    Xét phương trình mặt phẳng (α): Ax + By + Cz + D = 0 với A2 + B2 + C2 ≠ 0

    – Nếu D = 0 thì mặt phẳng (α) đi qua gốc tọa độ O.Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

    – Nếu A = 0, B ≠ 0, C ≠ 0 thì mặt phẳng (α) song song hoặc chứa trục Ox.

    – Nếu A ≠ 0, B = 0, C ≠ 0 thì mặt phẳng (α) song song hoặc chứa trục Oy.

    – Nếu A ≠ 0, B ≠ 0, C = 0 thì mặt phẳng (α) song song hoặc chứa trục Oz.Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

    – Nếu A = B = 0, C ≠ 0 thì mặt phẳng (α) song song hoặc trùng với (Oxy).

    – Nếu A = C = 0, B ≠ 0 thì mặt phẳng (α) song song hoặc trùng với (Oxz).

    – Nếu B = C = 0, A ≠ 0 thì mặt phẳng (α) song song hoặc trùng với (Oyz).Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

    Chú ý:

    – Nếu trong phương trình (α) không chứa ẩn nào thì (α) song song hoặc chứa trục tương ứng.

    – Phương trình mặt phẳng theo đoạn chắn (α): Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải. Ở đây (α) cắt các trục tọa độ tại các điểm (a; 0; 0), (0; b; 0), (0; 0; c) với abc ≠ 0.

3. Khoảng cách từ một điểm đến một mặt phẳng.

    • Trong không gian Oxyz, cho điểm Mo(xo; yo; zo) và mặt phẳng (α): Ax + By + Cz + D = 0

    Khi đó khoảng cách từ điểm Mo đến mặt phẳng (α) được tính:Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

4. Góc giữa hai mặt phẳng

    Trong không gian Oxyz, cho hai mặt phẳng (α): A1x + B1y + C1z + D1 = 0 và (β): A2x + B2y + C2z + D2 = 0

 5.Một số dạng bài tập về viết phương trình mặt phẳng

    Dạng 1: Viết phương trình mặt phẳng khi biết một điểm và vectơ pháp tuyến của nó.

    Phương pháp giải

    Áp dụng cách viết phương trình mặt phẳng đi qua 1 điểm và có 1 VTPT.

    Dạng 2: Viết phương trình mặt phẳng (α) đi qua 1 điểm Mo(xo; yo; zo) và song song với 1 mặt phẳng (β): Ax + By + Cz + D = 0 cho trước.

    Phương pháp giải

    Cách 1: Thực hiện theo các bước sau:

    1. VTPT của (β) là nβ = (A; B; C)

    2. (α) // (β) nên VTPT của mặt phẳng (α) là nα = nβ = (A; B; C)

    3. Phương trình mặt phẳng (α): A(x – x0) + B(y – y0) + C(z – z0) = 0

    Cách 2:

    1. Mặt phẳng (α) // (β) nên phương trình (P) có dạng: Ax + By + Cz + D’ = 0 (*), với D’ ≠ D.

    2. Vì (P) qua 1 điểm Mo(xo; yo; zo) nên thay tọa độ Mo(xo; yo; zo) vào (*) tìm được D’.

    Dạng 3: Viết phương trình mặt phẳng (α) đi qua 3 điểm A, B, C không thẳng hàng.

    Phương pháp giải

    1. Tìm tọa độ các vectơ: AB→AC→

    2. Vectơ pháp tuyến của (α) là: nα = [AB→AC→]

    3. Điểm thuộc mặt phẳng: A (hoặc B hoặc C).

    4. Viết phương trình mặt phẳng qua 1 điểm và có VTPT nα

    Dạng 4: Viết phương trình mặt phẳng (α) đi qua điểm M và vuông góc với đường thẳng Δ

    Phương pháp giải

    1. Tìm VTCP của Δ là uΔ

    2. Vì (α) ⊥ Δ nên (α) có VTPT nα = uΔ

    3. Áp dụng cách viết phương trình mặt phẳng đi qua 1 điểm và có 1 VTPT nα

    Dạng 5: Viết phương trình mặt phẳng (α) chứa đường thẳng Δ, vuông góc với mặt phẳng (β)

    Phương pháp giải

    1. Tìm VTPT của (β) là nβ

    2. Tìm VTCP của Δ là uΔ

    3. VTPT của mặt phẳng (α) là: nα = [nβuΔ]

    4. Lấy một điểm M trên Δ

    5. Áp dụng cách viết phương trình mặt phẳng đi qua 1 điểm và có 1 VTPT.

    Dạng 6: Viết phương trình mặt phẳng (α) qua hai điểm A, B và vuông góc với mặt phẳng (β)

    Phương pháp giải

    1. Tìm VTPT của (β) là nβ

    2. Tìm tọa độ vectơ AB→

    3. VTPT của mặt phẳng (α) là: nα = [nβAB→]

    4. Áp dụng cách viết phương trình mặt phẳng đi qua 1 điểm và có 1 VTPT.

    Dạng 7: Viết phương trình mặt phẳng (α) chứa đường thẳng Δ và song song với Δ’ (Δ, Δ’ chéo nhau).

    Phương pháp giải

    1. Tìm VTCP của Δ và Δ’ là uΔ và uΔ’

    2. VTPT của mặt phẳng (α) là: nα = [uΔuΔ’]

    3. Lấy một điểm M trên Δ

    4. Áp dụng cách viết phương trình mặt phẳng đi qua 1 điểm và có 1 VTPT.

    Dạng 8: Viết phương trình mặt phẳng (α)hứa đường thẳng Δ và 1 điểm M

    Phương pháp giải

    1. Tìm VTCP của Δ là uΔ, lấy 1 điểm N trên Δ. Tính tọa độ MN→

    2. VTPT của mặt phẳng (α) là: nα = [uαMN→]

    3. Áp dụng cách viết phương trình mặt phẳng đi qua 1 điểm và có 1 VTPT.

    Dạng 9: Viết phương trình mặt phẳng (α) chứa 2 đường thẳng cắt nhau Δ và Δ’

    Phương pháp giải

    1. Tìm VTCP của Δ và Δ’ là uΔ và uΔ’

    2. VTPT của mặt phẳng (α) là: nα = [u→ΔuΔ’]

    3. Lấy một điểm M trên Δ

    4. Áp dụng cách viết phương trình mặt phẳng đi qua 1 điểm và có 1 VTPT.

    Dạng 10: Viết phương trình mặt phẳng (α) chứa 2 song song Δ và Δ’

    Phương pháp giải

    1. Tìm VTCP của Δ và Δ’ là uΔ và uΔ’, lấy M ∈ Δ, N ∈ Δ’

    2. VTPT của mặt phẳng (α) là: nα = [uΔMN→]

    3.Áp dụng cách viết phương trình mặt phẳng đi qua 1 điểm và có 1 VTPT.

    Dạng 11: Viết phương trình mặt phẳng (α) đi qua một điểm M và song song với hai đường thẳng Δ và Δ’ chéo nhau cho trước.

    Phương pháp giải

    1. Tìm VTCP của Δ và Δ’ là uΔ và uΔ’

    2. VTPT của mặt phẳng (α) là: nα = [uΔuΔ’]

    3.Áp dụng cách viết phương trình mặt phẳng đi qua 1 điểm và có 1 VTPT.

    Dạng 12: Viết phương trình mặt phẳng (α) đi qua một điểm M và vuông góc với hai mặt phẳng (P), (Q) cho trước.

    Phương pháp giải

    1. Tìm VTPT của (P) và (Q) là nP và nQ

    2. VTPT của mặt phẳng (α) là: nα = [nPnQ]

    3.Áp dụng cách viết phương trình mặt phẳng đi qua 1 điểm và có 1 VTPT.

    Dạng 13: Viết phương trình mặt phẳng (α) song song với mặt phẳng (β) và cách (β): Ax + By + Cz + D = 0 một khoảng k cho trước.

    Phương pháp giải

    1. Trên mặt phẳng (β) chọn 1 điểm M.

    2. Do (α) // (β) nên (α) có phương trình Ax + By + Cz + D’ = 0 (D’ ≠ D).

    3. Sử dụng công thức khoảng cách d((α), (β)) = d(M, (β)) = k để tìm D’.

    Dạng 14: Viết phương trình mặt phẳng (α) song song với mặt phẳng (β): Ax + By + Cz + D = 0 cho trước và cách điểm M một khoảng k cho trước.

    Phương pháp giải

    1. Do (α) // (β) nên (α) có phương trình Ax + By + Cz + D’ = 0 (D’ ≠ D).

    2. Sử dụng công thức khoảng cách d(M, (α)) = k để tìm D’.

    Dạng 15: Viết phương trình mặt phẳng (α) tiếp xúc với mặt cầu (S).

    Phương pháp giải

    1. Tìm tọa độ tâm I và tính bán kính của mặt cầu (S)

    2. Nếu mặt phẳng (α) tiếp xúc với mặt cầu (S) tại M ∈ (S) thì mặt phẳng (α) đi qua điểm M và có VTPT là MI→

    3. Khi bài toán không cho tiếp điểm thì ta phải sử dụng các dữ kiện của bài toán tìm được VTPT của mặt phẳng và viết phương trình mặt phẳng có dạng: Ax + By + Cz + D = 0 (D chưa biết).

    Sử dụng điều kiện tiếp xúc: d(I,(α)) = R để tìm D.

    Dạng 16: Viết phương trình mặt phẳng (α) chứa một đường thẳng Δ và tạo với một mặt phẳng (β): Ax + By + Cz + D = 0 cho trước một góc φ cho trước.

    Phương pháp giải

    1. Tìm VTPT của (β) là nβ

    2. Gọi nα(A’; B’; C’)

    3. Dùng phương pháp vô định giải hệ: Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

    4. Áp dụng cách viết phương trình mặt phẳng đi qua 1 điểm và có 1 VTPT.

trên đây Tradapan.net đã tổng hợp được nội dung Toán 12 Hình học Ôn tập chương 3: Phương pháp tọa độ trong không gian môn Toán Lớp 12.. Chúc các bạn học tập tốt môn Toán và thành công.

Tài liệu hay tại đây:

TÀI LIỆU

#tradapan


Warning: A non-numeric value encountered in /home/otcwszhx/public_html/wp-content/themes/Newspaper/includes/wp_booster/td_block.php on line 353