Sau đây là phần lý thuyết TOÁN 12 Bài 2 CỰC TRỊ CỦA HÀM SỐ chúng ta cùng nhau tìm hiểu:
1: Định nghĩa cực trị hàm số
1.Định nghĩa: Cho hàm số y = f(x)xác định và liên tục trên khoảng (a;b) (có thể a là -∞; b là +∞) và điểm x0∈(a;b).
Nếu tồn tại số h > 0 sao cho f(x)< f(x0 ) với mọi x ∈ (x0 – h;x0 + h) và x≠x_0 thì ta nói hàm số f(x) đạt cực đại tại x0.
Nếu tồn tại số h >0 sao cho f(x) >f(x0 ) với mọi x ∈ (x0 – h;x0 + h) và x ≠ x0 thì ta nói hàm số f(x) đạt cực tiểu tại x0.
2.Điều kiện đủ để hàm số có cực trị:
Giả sử hàm số y=f(x) liên tục trên
K=(x0 – h;x0 + h)và có đạo hàm trên K hoặc trên K\{x0}, với h >0.
Nếu f'(x)> 0 trên khoảng (x0 – h;x0) và f'(x) <0 trên (x0;x0 + h) thì x0 là một điểm cực đại của hàm số f(x).
Nếu f'(x) < 0 trên khoảng (x0 – h;x0) và f'(x) >0 trên (x0;x0+ h) thì x0 là một điểm cực tiểu của hàm số f(x).

Chú ý.
Nếu hàm số y=f(x) đạt cực đại (cực tiểu) tại x0 thì x0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f(x0) được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số, kí hiệu là fCÑ (fCT), còn điểm M(x0;f(x0)) được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.
Các điểm cực đại và cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.
3.Quy tắc tìm cực trị của hàm số
Quy tắc 1:
Bước 1. Tìm tập xác định của hàm số.
Bước 2. Tínhf'(x). Tìm các điểm tại đó f'(x)bằng 0 hoặc f'(x) không xác định.
Bước 3. Lập bảng biến thiên.
Bước 4. Từ bảng biến thiên suy ra các điểm cực trị.
Quy tắc 2:
Bước 1. Tìm tập xác định của hàm số.
Bước 2. Tính f'(x). Giải phương trình f'(x)và ký hiệuxi (i=1,2,3,…)là các nghiệm của nó.
Bước 3. Tính f”(x) và f”(xi ) .
Bước 4. Dựa vào dấu của f”(xi )suy ra tính chất cực trị của điểm xi.
Cho hàm số xác định và liên tục trên khoảng (a;b) và x0 ∈ (a; b)
• Nếu tồn tại h > 0 sao cho f(x) < f(x0) và ∀x ∈(x0 – h; x0 + h) và x ≠ x0 thì ta nói f đạt cực đại tại x0.
• Nếu tồn tại h > 0 sao cho f(x) > f(x0) và ∀x ∈(x0 – h; x0 + h) và x ≠ x0 thì ta nói f đạt cực tiểu tại x0.
Khi đó:
+ x0 là điểm cực trị của hàm số.
+ f(x0) là giá trị cực trị của hàm số.
+ M(x0, f(x0)) là điểm cực trị của đồ thị hàm số.
4 Điều kiện cần và đủ để hàm số đạt cực trị
1: Điều kiện cần. Nếu hàm số f(x) đạt cực trị tại x0 và hàm số f(x) có đạo hàm tại điểm x0 thì f'(x0)= 0 .
Ghi chú: Hàm số f(x) có thể đạt cực trị tại một điểm mà tại đó nó không có đạo hàm.
2 : Điều kiện đủ. Giả sử hàm số f(x) xác định trên (a; b) và x0 ∈ (a; b)
Định lí 1: Nếu f(x) có đạo hàm trên (a; b)\{x0} và với h > 0 sao cho (x0 – h; x0 + h) ⊂ (a; b) ta có
=> x0 là điểm cực đại của hàm số.
=> x0 là điểm cực tiểu của hàm số.
Định lí 2: Giả sử hàm số f(x) có đạo hàm cấp hai trên (a;b)
=> x0 là điểm cực tiểu của hàm số.
TRên đây TRA ĐÁP ÁN vừa giới thiệu tới các bạn Cực trị của hàm số: Lý thuyết cực trị hàm số Toán 12 . Mời các bạn cùng tham khảo thêm các môn trong chương trình 12 tại đây để giúp các bạn học tập tốt hơn.
Tài liệu hay tại đây:
TÀI LIỆU#tradapan